
JITModular: Teaching Synthesis by Using JITLib
as a Modular Synthesizer

H. James Harkins

Xinghai Conservatory of Music
jamshark70@zoho.com · jamshark70@gmail.com

ABSTRACT

The Just-In-Time Library (JITLib) in SuperCollider
supports free experimentation with signal processing
by separating the design of the connections from sig-
nals’ content. My JITModular quark serves as a con-
ceptual bridge between SuperCollider signal pro-
cessing and modular synthesizer design, taking full
advantage of JITLib’s hot-swapping and hot-patch-
ing capabilities for a free and flexible work flow.
This approach facilitates both teaching audio syn-
thesis and SynthDef development; this paper intro-
duces the framework primarily from a pedagogical
perspective, and describes the problems which JIT-
Modular addresses.

1. INTRODUCTION
SuperCollider is infamous for its steep learning
curve, a reputation earned in part by a certain
fragility in its “vanilla” methodologies. Who among
us has never reassigned a new synth or pattern player
to a variable, so that the old one becomes unreach-
able, and unstoppable, while still playing?

The Just-In-Time Library (JITLib) [1] alleviates
this difficulty and others by managing synth nodes
under a convenient umbrella called a NodeProxy,

which consists of a signal source and a bus hosting
the signal. Reassigning an audio source replaces the
old signal without orphaning it, reducing the need for
beginners to track nodes carefully. Meanwhile, the
proxy’s bus remains a stable reference point to ac-
cess the current signal, enabling free interconnec-
tions between signal processors.

For synthesis pedagogy, I favor modular designs
over VST-style instruments because the modules call
attention to individual components. Since the goal is
to streamline teaching and the development of syn-
thesis design, monophony is sufficient for most
cases. JITLib NodeProxies are already practically
modules, with inputs, signal processing, and an out-
put (with the advantage over modular-synthesizer
emulators such as VCV Rack, that they can be rede-
fined without breaking existing connections). In
practice, however, I encountered a few troublesome
aspects of JITLib’s interfaces for this usage style.
My JITModular quark [2] extends JITLib with a few
new features and workflow improvements (impor-
tantly, the ability to save and restore a patch’s state),

and establishes best practices to streamline the use of
a ProxySpace as a monophonic modular synthe-

sizer.
To introduce JITModular’s approach, I will first

walk through my typical first lesson with new stu-
dents, building a simple subtractive synthesizer in-
crementally. Then I will discuss problems in native
JITLib and JITModular’s solutions to them, outline
best practices and more advanced features, and con-
clude a brief assessment of the quark’s effectiveness.

2. Modular Design Advantages: A
Student’s First Exposure

In JITModular, the basic unit of signal processing is
a module, rather than a SynthDef. Modules may be
as simple as a single line of code. Also, if each mod-
ule is visually separated from other modules, then
students can focus full attention on one module at a
time and understand its elements: DSP operations, its
several inputs and single output, and implementation
or syntactic details. Building one component at a
time also structures the discussion of signal process-
ing around incremental additions; we can pause to
understand an oscillator fully before moving on to a
filter or envelope generator.

Emulating the design of modular synthesizers in-
cludes two elements: defining modules, and connect-
ing them.

Modules exist within an object, JITModPatch,

defined in the JITModular quark: p =
JITModPatch.new;. For convenience, I often as-

sign it to p, but the current patch can always be

reached from JITModPatch.current. Creating a

patch opens a new IDE code document as well as a
graphical window including buffer and MIDI con-
troller display, a textual representation of the patch’s
connections, and a JITLib ProxyMixer for inter-

active control over parameters. Each patch contains a
JITLib ProxySpace: an Environment where entities

assigned to environment variables are converted into
NodeProxy signals. When a JITModPatch’s code

window is focused, the patch’s ProxySpace be-

comes active; users can open multiple patches at the
same time and switch between them using document
tabs.1

Modules are defined in environment variables. In
the first lesson, I begin with a single-line sinewave

1 Windows users should be aware of two bug reports: “scide:
Document.current nulled on Class Library Recompile” [3],
and “Document’s envir feature sometimes doesn’t sync up in
Windows” [4].

Copyright: © 2025 Henry James Harkins. This is an open-
access article distributed under the terms of the Creative
Commons Attribution License 3.0 Unported, which permits
unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:jamshark70@gmail.com
mailto:jamshark70@zoho.com

oscillator: ~osc = #{ SinOsc.ar(440) };. At

this point, SuperCollider syntax is entirely unfamiliar
to the students, so I take plenty of time to explain
each syntax element in turn: the environment vari-
able as an identifier, the function braces, class
names, methods, and method-call arguments. For
students without prior programming experience, this
is already a lot to absorb!

As in standard JITLib usage, merely creating a
module does not automatically connect it to the au-
dio hardware. Any module may be “play”-ed at any
time (including use of the ProxyMixer “play” but-

ton), but I found it easier and more consistent to
route all audio through an ~out module with a stereo

input. The tail of the DSP chain should be connected
to this ~out module, using the left-to-right chaining

operator: ~osc <>> ~out. (Multiple modules may

be chained at one time, such as ~osc <>> ~filter
<>> ~out.) The target of a chaining operation is a

JMInput.ar UGen, a wrapper for NamedControl

that initializes to two channels of audio-rate input.
Having obtained a sound, we then add a frequency

control. This addition introduces the use of function
argument lists to expose module parameters for ex-
ternal control. The new control input is automatically
available in GUI, by clicking the “ed” button next to
the ~osc module in the ProxyMixer panel. Adding

a freq control raises student engagement because

the effect of the slider is easy to hear, and also, the
slider “just works,” because its range is already de-
fined: immediate positive feedback. Next comes the
idea of explicit parameter ranges. If we change the
oscillator to VarSaw, we can introduce a width

parameter, whose range 0.0–1.0 must be explicitly
defined using the addSpec method from the

JITLibExtensions quark [5] (Figure 1).

~osc.addSpec(\width, [0, 1]);
~osc = #{ |freq = 440, width = 0.5|
 VarSaw.ar(freq, width)
};

Figure 1. An oscillator module with an explicit
parameter range.

At this point, the main syntax elements are on the
table, so it becomes straightforward to introduce dif-
ferent oscillator types and expand to filters and enve-
lope generators. By the end of the first lesson, then,
we have a working monophonic subtractive synthe-
sizer (Figure 2), in four clearly delineated modules
(including ~out) and about 35 lines of code.

~out = #{ |amp = 0.2| amp * JMInput.ar };
~out.play;

~osc = #{ |freq = 440| SinOsc.ar(freq) };

~osc <>> ~out;

// try another waveform
~osc.addSpec(\pwidth, [0.01, 0.99]);
~osc = #{ |freq = 220, pwidth = 0.5|

 VarSaw.ar(freq, pwidth)
};

~filter.addSpec(\ffreq, \freq, \rq, [1, 0.05,
\exp]);
~filter = #{ |ffreq = 2000, rq = 1|
 RLPF.ar(JMInput.ar, ffreq, rq)
};

~osc <>> ~filter <>> ~out;

// try a third waveform
~osc = #{ |freq = 220, pwidth = 0.5|
 Pulse.ar(freq, pwidth)
};

~eg.addSpec(
 \atk, [0.01, 2, \exp],
 \dcy, [0.01, 2, \exp],
 \sus, [0, 1],
 \rel, [0.01, 2, \exp]
);
~eg = #{ |gt = 1, atk = 0.01, dcy = 0.15, sus
= 0.6, rel = 0.08|
 JMInput.ar
 *
 EnvGen.kr(Env.adsr(atk, dcy, sus, rel),
gt)
};

// need to write only eg's source and target
~filter <>> ~eg <>> ~out;

Figure 2: A functioning subtractive synthesizer.

This, of course, is not the shortest possible repre-
sentation of this synthesizer; the corresponding
SynthDef would comprise 9 lines. But brevity is not

clarity. A SynthDef factors all of the signal process-

ing into a single block. For beginning students, a uni-
fied synthesis function blurs into a wall of text from
which specific features may be difficult to disen-
tangle. In a JITModPatch, modules may be easily

located by a descriptive variable name, and each
module’s boundaries are clearly marked by function
braces. Students can more easily focus on one mod-
ule when needed and ignore the rest temporarily.
Further, the patch code reflects not only the final de-
sign, but also includes a written record of modules
and connections that were tried and abandoned. It
also defines parameter ranges per module, supporting
the parameter faders in the graphical interface. The
automatic GUI is extremely useful for beginning stu-
dents! Lastly, the ability to replace and repatch mod-
ules on-the-fly makes the design process more inter-
active, and facilitates the audition of partial results in
progress.

3. JITLib Problems and Solutions
At first, it might seem that JITLib is already natively
equipped for this usage style. There are a few stick-
ing points, however.

The first problem arises, in fact, with the first
“simplest oscillator” example in section 2: the
SinOsc is monophonic, while the ~out module

expects a stereo input, so the result will be heard
only in the left channel. To simplify students’ first
exposure, JITModular expands audio NodeProxies to
stereo by default.2 (Control-rate modules remain
mono.) In Figure 2, ~osc specifies a single unit gen-

erator (no .dup, no !2, no panning), but its output is

automatically duplicated onto the right channel as
well. A stereo module should connect to a stereo in-
put. Native SuperCollider syntax is Named-
Control.ar(\in, 0!2). I felt that the 0!2 is awk-

ward to explain to students. So JITModular provides
a JMInput class as a factory for a NamedControl,

where the default at audio rate is stereo. End-to-end
stereo may consume more CPU cycles, but the cost
is negligible compared to the benefit of avoiding
confusion over channel counts.

The second problem stems from the fact that a
SuperCollider code document does not unam-
biguously represent the final state of the patch. The
final state is the aggregate result of the history of
statements that were issued. SuperCollider’s inter-
active REPL means that statements can be executed
in an order different from that in which they appear
in the document; thus the document is not sufficient
to recover a given state. Imagine that a patch passes a
signal through a filter and a distortion module. The
sound will be very different depending on whether
the filter or the distortion module comes first. If both
orderings were tried, the code document might retain
instructions for both; the active ordering could then
not be inferred from the code document. JITModular
provides two features to alleviate the issue. First, a
panel in the GUI window lists current connections.
In the above example, this panel would show either
~source <>> ~filter <>> ~dist <>> ~out or

~source <>> ~dist <>> ~filter <>> ~out,

depending on the active state. Second, JITModular
saves patches into its own file format, restoring mod-
ules’ definitions, parameter values, connections, and
even buffers and MIDI controller mappings, as well
as the user’s original code document (at whatever
level of disorganization). There are some minor re-
strictions, which are easily avoided by following a
few best practices, discussed below. A comprehen-
sive save/load mechanism is unusual in the Super-
Collider ecosystem, and is essential for classroom
usage: to grade students’ work, it is necessary to re-
store it reliably.

The third problem is buffer management. I chose
to base JITModPatch on ProxySpace to reduce the

typing burden for module definition and chaining.
But a ProxySpace can contain only NodeProxies;

buffers cannot be stored in its environment variables.
Also, if buffers are to be restored when loading a
patch from disk, then they cannot be stored in free-

2 A module can override the two-channel default by
initializing to a specific number of channels before defining
the module. For example, when building a vocoder, the
multiband analysis stage may be initialized by running
~bandVolume.ar(40) for 40 bands; when the DSP function
is provided after this, the 40 channels will not collapse down
to stereo. However, there is no need for beginning students to
confront this type of fine print at their first exposure.

standing variables. JITModular’s solution is to im-
plement addBuf and freeBuf methods on the

JITModPatch object. Buffers are stored in the patch

under symbolic keys; saving the patch creates a
folder alongside the patch file where buffers are
saved as WAV files, and automatically reloaded. Au-
dio modules access buffers by way of control-rate
“buffer-index” modules created by addBuf. Figure 3

illustrates. The addBuf call associates a JMBuf
(which extends Buffer for waveform display in the

GUI window) with the key \a11, whereupon the ex-

pression ~a11.kr(1) in a module accesses the buf-

fer number. Using control-rate proxies for buffer
numbers allows users to hot-swap buffers: if the user
calls addBuf for a buffer name that already exists,

the old buffer is released and the buffer proxy’s buf-
fer number is updated, so that the change trans-
parently cascades through the whole patch.

JITModPatch.current.addBuf(\a11,
JMBuf.read(s, Platform.resourceDir +/+
"sounds/a11wlk01.wav"));

~loop = #{
 var buf = ~a11.kr(1);
 PlayBuf.ar(1, buf, BufRateScale.kr(buf),
loop: 1)
};

~loop <>> ~out;

Figure 3. Buffer usage in a JITModular patch.

4. Usage details and best practices
Space does not permit complete documentation of all
JITModular features; this section is necessarily ab-
breviated.

One best practice has already been mentioned: to
reserve one module, ~out, to represent hardware

output. This provides a single, consistent locus to
mute or adjust the volume of the entire patch. I also
usually reserve ~eg for the main volume envelope,

as shown in Figure 2. Note also that the keyword
gate is reserved for NodeProxy’s internal use, so a

gate for the patch should be written gt.

I recommend using closed functions for module
definitions. Module definitions can be saved into the
patch file only if they are closed, i.e., if they do not
refer to any variables declared outside the function’s
scope. In SuperCollider, a function may be explicitly
closed by preceding the opening brace with a hash
mark: #{ ... }. If the hash mark is omitted and the

function meets the criteria to be closed, then it will
be closed internally; strictly speaking, then, the hash
mark is optional. But, if you write the hash mark at
the head of a function that is accidentally open, the
resulting compilation error will protect you from
creating a patch that cannot be saved to disk.

Splitting a single note’s processing across multi-
ple modules raises a question about argument names.
Taking a freq argument as an example, should the

patch have one single global frequency, or should
each module’s freq parameter be independent of the

others? In JITModular, NodeProxies are components
working together rather than independent layers, all,
so same-name arguments are synchronized across all
of the patch’s modules. This is different from stan-
dard JITLib usage, where parameters are indepen-
dent between NodeProxies. Parameters that should
be independent need to have different names: note in
Figure 2 that the oscillator has its freq, while the fil-

ter has ffreq.

Sequencers may be added into the patch using a
new “proxy role,” \psSet (short for “proxyspace

set”). A pattern assigned to this role will set para-
meters within the patch. (That parameters are syn-
chronized simplifies sequencing: the user is relieved
of the burden of specifying which modules to up-
date.) Figure 4 shows a simple sequencer that may be
applied to the patch in Figure 2.

~player = \psSet -> Pbind(
 \midinote, Pseq([33, 45, 40, 50, 43],
inf),
 \dur, 0.25,
 \legato, Pwrand([0.6, 1.01], [0.8, 0.2],
inf)
);

Figure 4. A simple psSet sequencer.

Patch properties that do not otherwise fit into the
JITModPatch structure, such as clock tempo for

sequencing, can be set up in a customInit function

assigned to the patch object. A companion hook,
cleanup, can release any persistent resources that

customInit created. When assigning customInit,

the function is evaluated automatically. Figure 5
shows the recommended way to set sequencer
tempo.

JITModPatch.current.customInit = {
 TempoClock.tempo = 128/60;
};

Figure 5. Custom initializer for tempo.

Modulators should generally be implemented as
single-channel control-rate modules, which may be
patched into audio modules’ control inputs using
set(). A helper class, JMModulation, makes it

simpler to implement modulation in the standard way
found in many modular components and VST instru-
ments, in terms of deviation away from a set value.

External controls are based on MIDI continuous
controllers. Calling initMidi on the patch prepares

it to receive external controller data. Controls may be
mapped by number (addCtl), or “learned” by touch-

ing a MIDI control on the hardware (learnCtl).

Mappings are saved in the patch, and are visible in
the GUI window’s top-left panel. For Open Sound
Control mapping, a midiOSCBridge can associate

incoming OSC command paths with MIDI controller
numbers. If the OSC bridge is initialized in the
customInit function, it will be restored when load-

ing the patch.
A weakness of JITModular is that it does not na-

tively handle polyphony. A patch would need to be
translated into a SynthDef and performed poly-
phonically using a standard Pbind. For courses in
synthesis theory, monophonic synthesizers may be
sufficient; polyphony could be introduced separately
to advanced students. To assist, JITModPatch has an
experimental decompiler: clicking the “SynthDef”
button will attempt to render the patch into a Synth-
Def. The output is not optimal for human reading,
and may in some cases require some minor hand-
editing. But, as a quick-and-dirty way to get a re-
usable SynthDef from a patch, it is certainly faster
than hand coding.

In the future, I would like to improve server node
ordering in JITModPatch. In JITLib, node ordering is
arbitrary; audio-rate controls may introduce control-
block delays. The patch decompiler already knows
the proper node order; I have not yet applied this to
the patch nodes, however. Another enhancement
would be a graphical display of modules and their
connections; this is low priority at this time.

5. Conclusion
I have used JITModular with master’s students in my
digital audio and interactive media seminar. These
students’ first language is not English, so they strug-
gle with spelling and capitalization more than Eng-
lish-speaking students would. In a way, that is an
ideal test case; these students would be less likely to
engage with large blocks of code, and they get more
benefit from the isolation of signal processors into
separate, short code blocks.

Additionally, JITModPatch streamlines the de-

velopment process for synthesis designs. The auto-
matic GUI in particular and the ability to save patch
files are especially useful. I expect this will be part of
my workflow for a long time to come.

6. REFERENCES

[1] J. Rohrhuber, A. de Campo, “Just In Time
Programming.” In: D. Cottle, N. Collins, S.
Wilson, eds., The SuperCollider Book. MIT
Press, Cambridge (MA), 2011.

[2] H. J. Harkins, “JITModular.” Github repository.
https://github.com/jamshark70/JITModular.
Accessed February 2, 2025.

[3] Github user jrsurge, SuperCollider bug report
#4413, https://github.com/supercollider/super-
collider/issues/4413, accessed February 2, 2025.

[4] Github user jamshark70, SuperCollider bug
report #6082, https://github.com/supercollider/
supercollider/issues/6082, accessed February 2,
2025.

[5] A. de Campo. “JITLibExtensions.” Github
repository. https://github.com/supercollider-
quarks/JITLibExtensions. Accessed February 2,
2025.

https://github.com/supercollider-quarks/JITLibExtensions
https://github.com/supercollider-quarks/JITLibExtensions
https://github.com/supercollider/supercollider/issues/6082
https://github.com/supercollider/supercollider/issues/6082
https://github.com/supercollider/supercollider/issues/4413
https://github.com/supercollider/supercollider/issues/4413
https://github.com/jamshark70/JITModular

