
SCKinect

Evan Murray
Aura Audio LLC

evan@auraaudio.io

ABSTRACT

SCKinect is a SuperCollider plugin that allows users to
interact with a Kinect sensor. Its core implementation con-
tains a unit generator called ’Kinect’, designed to output
motion-tracking data to control buses. The plugin also in-
cludes commands, facilitating interaction with Kinect de-
vices through the interpreter. The interpreted nature of Su-
perCollider and the server-language duality allow multi-
media enthusiasts to efficiently communicate with techni-
cal rendering systems. This is perfect for live performances
and interactive installations. With the addition of this plu-
gin, performers can interact with the Kinect directly in Su-
perCollider with low latency. This paper will cover the im-
plementation of the plugin and its potential applications.

1. BACKGROUND

According to [1], the record for the fastest-selling gaming
peripheral was set by the Kinect on January 3rd, 2011. The
device sold on average 133,333 units per day in the first 60
days of its launch. Featuring a custom System on Chip,
originally developed by PrimeSense, this device was de-
signed to be good at detecting people and their surrounding
environment [2]. In fact, it almost did this too well. Nat-
urally, users became skeptical of the sensors built into the
device and their privacy implications, as described in [3].
This, in combination with numerous other factors, led to
the eventual decline of the Kinect as a consumer product
over the next decade. According to [4], the last Kinect
product (Kinect Azure) was discontinued in October 2023,
marking over a decade-long life-cycle for this product.

2. MOTIVATION

If the Kinect was already discontinued and no longer being
supported by its official creator, a valid question to ask is:
why should one continue using it? Even better: how might
one use it with SuperCollider? Musicians, whether they re-
alize it or not, inherently control numerous parameters on
their instrument–leading to a unique musical expression.
To match the sound of a babbling crowd at a restaurant, a
trombone player might mask their melody with a plunger
mute to get that classic ”wah wah” sound. In electronic
music, a synthesizer performer or DJ might turn the knobs
on their device which control the cutoff frequency of a
highpass filter. This is typically done to prepare the crowd

Copyright: ©2025 Evan Murray et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

for a major transition in the song. In interactive program-
ming languages, such as SuperCollider, performers don’t
have these knobs or tactile interfaces which physical in-
struments might offer. However, they can be implemented
by connecting a joy stick or mouse as a Human Interaction
Device. This will allow the performer to have some tactile
input which they can use to control a particular parame-
ter in their program, influencing the sound or visual output
which is created.

3. NATURAL USER INTERFACES

There are a class of user interfaces which are encompassed
under the term, Natural User Interfaces. These types of in-
terfaces, according to [5], bypass conventional ones (such
as the mechanical mouse and keyboard). [6] further clas-
sifies these as Reality-Based Interfaces (RBI). Something
compelling about these is their aim to intuit real-world in-
teractions. One of the themes mentioned in [6] related to
RBI is body awareness and skills, which describes how
”people have an awareness of their own physical bodies
and posses skills for controlling and coordinating their bod-
ies.” This is what neuroscientists would call ”propriocep-
tion.” Virtual Reality devices take this into account with
their head-mounted displays. Instead of interacting by key-
board or mouse, the user can tilt their head in different di-
rections as they would in the real world.

4. KINECT INTERFACE

Using the Kinect and a couple of open-source helper tools,
tracking a user’s full body motion with high precision is
possible. This is an alternative to using a VR headset with
a tracker (required for full-body tracking in VR). Further-
more, the Kinect is much cheaper than the combined price
of a VR headset and a tracker. Based on what was dis-
cussed previously in 2, this motion tracking tool can be
used similar to a Human Interaction Device in SuperCol-
lider, allowing the user to map body movements to control
busses. A caveat to this, discussed in 5.2, is depending on
the implementation–some sophisticated hardware may be
required to perform with low latency. This typically re-
quires a Graphical Processing Unit (GPU) to help the Cen-
tral Processing Unit (CPU) with absurd amounts of data.
The data comes from a pose estimation model which re-
lies on machine learning algorithms. It’s worth noting over
the last decade, GPU’s and CPU’s have become smaller
and more affordable–making their use a bit more practical
to the average consumer. In addition, there are plenty of
algorithms which don’t rely on machine learning, such as
the application of Dijkstra’s algorithm demonstrated in [7].
These algorithms can perform low-latency human pose es-

mailto:evan@auraaudio.io
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


timation on the CPU. A future goal of SCKinect is to in-
corporate algorithms similar to these for non-GPU users.
However, for the sake of simplicity–the discussion below
will focus on all the hardware and software components
used in constructing the GPU-based machine learning ap-
proach.

5. HARDWARE COMPONENTS

The hardware components which made this project possi-
ble are described below. It’s important to note the Kinect
v2 needs a separate USB adapter for connecting to the
computer, which costs around 20-40 US dollars. The Kinect
v1 has an adapter which is sold for around half the price.

5.1 AMD Ryzen 5 3600 CPU

This CPU shown in Figure 1a was chosen for this project
because it has a nice performance which doesn’t cause the
GPU to bottleneck. The Ryzen 5 3600 sells for about 40-
80 US dollars with a base clock speed of 3.6 GHz and 6
cores with 12 threads.

5.2 NVIDIA GTX 1080 GPU

The GPU shown in Figure 1b was chosen for its compat-
ibility with the pose estimation model. This is probably
the most expensive hardware component of this project,
selling for about 150-200 US dollars for a refurbished de-
vice. However, as noted previously–further options are be-
ing explored for CPU-only pose estimation. Additionally,
NVIDIA’s competitor–AMD–sells similar GPU’s for about
half of the price. Thus, it may be worth further investiga-
tion to explore adding support for other GPU brands as
well.

5.3 Kinect

The Kinect v2, pictured in Figure 1c, is currently one of
the cheapest Red Green Blue Depth (RGB-D) cameras on
the market, selling pre-owned for about 50-100 US dollars.
The Kinect v1 sells at about half the price with slightly
lower specifications. At this time, SCKinect currently only
supports 2D tracking. Thus, one technically doesn’t need
a Kinect and could use a camera instead. However, in-
corporating depth data into the existing pose estimation
model is currently being explored. The Kinect v2 fea-
tures a 1920x1080 resolution color camera, as well as a
512x424 resolution depth camera. The depth is based on
the Time of Flight (ToF) sensors which put out infared
light. It also has a 70x60 degree field of view and a 4-
channel microphone array, which records audio at 48 kHz.
There are also other methods of doing 3-dimensional (3D)
pose tracking besides using an RGB-D camera (i.e. stereo-
scopic cameras). However, using an RGB-D camera as
opposed to a stereoscopic setup may yield a higher resolu-
tion indoors, while stereoscopic cameras are better for use
outdoors (since the sun’s infared rays will overpower the
Kinect’s infared). One may also consider using multiple
RGB-D and stereoscopic cameras for improved flexibility.

(a) Ryzen 5 3600 (b) GTX 1080 (c) Kinect v2

Figure 1: A picture of the three essential hardware compo-
nents for the project.

6. SOFTWARE COMPONENTS

6.1 Libfreenect2

Libfreenect2, as shown in [8], is a library created by open-
source developers for retrieving data from the Kinect. This
data does not include pose estimations, but it includes all
of the functions needed for interacting with the Kinect (i.e.
opening, closing, and starting a stream of data).

6.2 OpenPose

OpenPose is the library responsible for returning the pose
estimation data, pictured in Figure 2. It was developed by
the Perceptual Computing Lab at Carnegie Mellon Univer-
sity and uses Convolutional Neural Networks to do marker-
less motion tracking. This tracking data includes 24 differ-
ent joints on the human body. See [9, 10, 11, 12] for more
information.

7. IMPLEMENTATION

SCKinect is implemented as a SuperCollider 3 plugin, fea-
turing server commands for interacting with the compo-
nents discussed in 6.1 and 6.2 respectively. The full source
code is available on GitHub 1 . Currently, the plug-in works
best if installed on Ubuntu 20.04. However, future releases
will include support for both macOS and Windows–with
or without a GPU.

8. COMMANDS

Commands allow SuperCollider to pass parameters from a
SuperCollider class to the plugin, allowing one to config-
ure the Kinect and OpenPose directly from SuperCollider.
The currently implemented commands are explained be-
low. They should also be run in the order they are shown
when using SuperCollider.

8.1 Kinect.findAvailable

This is designed similar to the HID.findAvailable
command in SuperCollider. It queries all of the Kinect de-
vices connected to the computer and posts their serial num-
bers to the post window, as shown below:

-> Kinect
[Info] [Freenect2Impl] enumerating
devices...
[Info] [Freenect2Impl] 12 usb devices

1 https://github.com/L42i/SCKinect

https://github.com/L42i/SCKinect
https://github.com/L42i/SCKinect


Figure 2: The window displayed in SCKinect which shows
the 24 joints being tracked on the human body real-time.

connected
[Info] [Freenect2Impl] found valid
Kinect v2 @4:4 with serial
008953333347
[Info] [Freenect2Impl] found valid
Kinect v2 @4:2 with serial
065915234247
[Info] [Freenect2Impl] found 2
devices

8.2 Kinect.setPipeline

This command determines the device responsible for pass-
ing the data from the Kinect to OpenPose. The possible
pipelines are Dump, CPU, OpenGL, CUDA, and CUD-
AKDE. For example, if one wanted to set the pipeline to
use CUDA (assuming they have an NVIDIA GPU and the
CUDA toolkit installed), they could run the command:

Kinect.setPipeline("CUDA")

8.3 Kinect.openDevice

Kinect.openDevice opens the device with the given
serial number. For example, the second device shown in
the output of running the command in 8.1 is opened by
running:

Kinect.openDevice("065915234247")

8.4 Kinect.start

This command will tell libfreenect2 to start prepar-
ing the Kinect for processing frames.

8.5 Kinect.configureTracking

This command configures the OpenPose model with spe-
cific settings. There are a lot of parameters which will be
documented in footnote 1 Page 2. However, the most im-
portant one to understand is the path to the model folder,

"/home/emurray49/openpose/models". As op-
posed to the folder shown below, an existing path should
be passed to the function instead. More instructions are
available on GitHub Pages 2 . Here is what the full com-
mand might look like:

Kinect.configureTracking
(
3, 1,
"/home/emurray49/openpose/models",
1, 0, 1, 0.25,
0, "-1x-1", "-1x256",
1, "BODY 25", 0.5,
0.5, 0, 0.05, -1, 0.0
)

8.6 Kinect.startTracking

If the previous commands run successfully, one may start
the motion tracking by running this command. Upon run-
ning this command, the pose tracking window will be dis-
played, as shown in Figure 2.

8.7 Kinect.hideDisplay

If one wishes to hide this display of the pose tracking, they
may disable it by running the above command.

8.8 Kinect.showDisplay

To re-enable the pose tracking display, one may run this
command after it has been disabled.

8.9 Kinect.stopTracking

This will stop the motion tracking and hide the display
window if shown.

8.10 Kinect.stop

This command will stop the Kinect frames.

8.11 Kinect.closeDevice

Kinect.closeDevice closes the device with the given
serial number. For example, the device shown in the output
of running the command in 8.1 is closed by running:

Kinect.closeDevice("065915234247")

9. MAPPING

The Kinect UGen included in the SCKinect plugin in-
cludes a .kr method for mapping a specific joint to a con-
trol bus. Consider the following example of creating two
control busses for a synthesizer:

∼amplitudeBus = Bus.control(s, 1);
∼frequencyBus = Bus.control(s, 1);

The first bus could be used to control the amplitude and
the second bus could be used to control the frequency. The
next goal is to map joints on the human body to these pa-
rameters. How about mapping the y position of the right

2 https://emurray2.github.io/spatial-auditory-feedback

https://emurray2.github.io/spatial-auditory-feedback/kinect/#openpose
https://emurray2.github.io/spatial-auditory-feedback/kinect/#openpose


wrist to the amplitude and the x position of the left wrist to
the frequency? Here is what that might look like:

var a = ∼kinectAmplitudeBus.index;
var b = ∼kinectFrequencyBus.index;
var e = "RWrist";
var f = "LWrist";
var c = Kinect.kr(0, 0.5, e, "Y"));
var d = Kinect.kr(20, 10000, f, "X"));
{Out.kr(a, c)}.play;
{Out.kr(b, d)}.play;

This creates two Kinect Unit Generators (”RWrist” and
”LWrist”) and maps their ”Y” and ”X” positions, given by
the .kr outputs, to the amplitude and frequency busses re-
spectively. Notice how the desired bounds of each control
input are also specified: amplitude being 0-0.5 and fre-
quency being 20-10000 Hertz. A full example of this
code is available in the examples folder of footnote 1
Page 2. The full list of joint names which are possible are
found in the OpenPose documentation 3 .

10. CONCLUSION

In conclusion, SCKinect provides a direct interface to the
Kinect in SuperCollider. This allows people to turn their
whole body into an immersive controller. Future goals of
this plugin are to support other GPU brands and non-GPU
based algorithms for performing pose estimation. In addi-
tion, a workflow for outputting a ”Z” coordinate for each
joint, along with the ”X” and ”Y” coordinates, will be de-
veloped. Contributions and feedback are welcome at the
repository listed in footnote 1 on Page 2.

11. REFERENCES

[1] “Fastest-selling gaming peripheral,” ac-
cessed Mar. 01, 2025. [Online]. Avail-
able: https://www.guinnessworldrecords.com/
world-records/fastest-selling-gaming-peripheral.html

[2] J. Boehm, “NATURAL USER INTERFACE SEN-
SORS FOR HUMAN BODY MEASUREMENT,” Int.
Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol.
XXXIX-B3, pp. 531–536, Aug. 2012, accessed Mar.
01, 2025. [Online]. Available: https://isprs-archives.
copernicus.org/articles/XXXIX-B3/531/2012/

[3] J. A. De Guzman, K. Thilakarathna, and A. Senevi-
ratne, “Security and Privacy Approaches in Mixed
Reality: A Literature Survey,” ACM Comput.
Surv., vol. 52, no. 6, pp. 1–37, Nov. 2020,
accessed Mar. 01, 2025. [Online]. Available:
https://dl.acm.org/doi/10.1145/3359626

[4] J. Peters, “Microsoft kills Kinect again,” Aug.
2023, accessed Mar. 01, 2025. [Online]. Avail-
able: https://www.theverge.com/2023/8/21/23840327/
microsoft-azure-kinect-developer-kit-discontinued

[5] D. A. Norman, “Natural user interfaces are not
natural,” interactions, vol. 17, no. 3, pp. 6–10, May

3 https://cmu-perceptual-computing-lab.github.io/openpose/

2010, accessed Mar. 01, 2025. [Online]. Available:
https://dl.acm.org/doi/10.1145/1744161.1744163

[6] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S.
Horn, O. Shaer, E. T. Solovey, and J. Zigelbaum,
“Reality-based interaction: a framework for post-
WIMP interfaces,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
Florence Italy: ACM, Apr. 2008, pp. 201–210,
accessed Mar. 01, 2025. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1357054.1357089

[7] A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, and
C. Theobalt, “A Data-Driven Approach for Real-
Time Full Body Pose Reconstruction from a Depth
Camera,” in Consumer Depth Cameras for Computer
Vision, A. Fossati, J. Gall, H. Grabner, X. Ren, and
K. Konolige, Eds. London: Springer London, 2013,
pp. 71–98, series Title: Advances in Computer Vision
and Pattern Recognition. accessed Mar. 02, 2025.
[Online]. Available: https://link.springer.com/10.1007/
978-1-4471-4640-7 5

[8] Lingzhu Xiang, F. Echtler, C. Kerl, T. Wiede-
meyer, Lars, Hanyazou, R. Gordon, F. Facioni,
Laborer2008, R. Wareham, M. Goldhoorn, Alberth,
Gaborpapp, S. Fuchs, Jmtatsch, J. Blake, Federico,
H. Jungkurth, Y. Mingze, Vinouz, D. Coleman,
B. Burns, R. Rawat, S. Mokhov, P. Reynolds,
P.E. Viau, M. Fraissinet-Tachet, Ludique, J. Billing-
ham, and Alistair, “libfreenect2: Release 0.2,” Apr.
2016, accessed Mar. 03, 2025. [Online]. Available:
https://zenodo.org/record/50641

[9] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and
Y. A. Sheikh, “OpenPose: Realtime Multi-Person 2D
Pose Estimation using Part Affinity Fields,” IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 2019, accessed Mar. 03, 2025.

[10] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand
Keypoint Detection in Single Images using Multiview
Bootstrapping,” in CVPR, 2017, accessed Mar. 03,
2025.

[11] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime
Multi-Person 2D Pose Estimation using Part Affinity
Fields,” in CVPR, 2017, accessed Mar. 03, 2025.

[12] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh,
“Convolutional pose machines,” in CVPR, 2016, ac-
cessed Mar. 03, 2025.

https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html#autotoc_md41
https://www.guinnessworldrecords.com/world-records/fastest-selling-gaming-peripheral.html
https://www.guinnessworldrecords.com/world-records/fastest-selling-gaming-peripheral.html
https://isprs-archives.copernicus.org/articles/XXXIX-B3/531/2012/
https://isprs-archives.copernicus.org/articles/XXXIX-B3/531/2012/
https://dl.acm.org/doi/10.1145/3359626
https://www.theverge.com/2023/8/21/23840327/microsoft-azure-kinect-developer-kit-discontinued
https://www.theverge.com/2023/8/21/23840327/microsoft-azure-kinect-developer-kit-discontinued
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html#autotoc_md41
https://dl.acm.org/doi/10.1145/1744161.1744163
https://dl.acm.org/doi/10.1145/1357054.1357089
https://dl.acm.org/doi/10.1145/1357054.1357089
https://link.springer.com/10.1007/978-1-4471-4640-7_5
https://link.springer.com/10.1007/978-1-4471-4640-7_5
https://zenodo.org/record/50641

	 1. Background
	 2. Motivation
	 3. Natural User Interfaces
	 4. Kinect Interface
	 5. Hardware Components
	5.1 AMD Ryzen 5 3600 CPU
	5.2 NVIDIA GTX 1080 GPU
	5.3 Kinect

	 6. Software Components
	6.1 Libfreenect2
	6.2 OpenPose

	 7. Implementation
	 8. Commands
	8.1 Kinect.findAvailable
	8.2 Kinect.setPipeline
	8.3 Kinect.openDevice
	8.4 Kinect.start
	8.5 Kinect.configureTracking
	8.6 Kinect.startTracking
	8.7 Kinect.hideDisplay
	8.8 Kinect.showDisplay
	8.9 Kinect.stopTracking
	8.10 Kinect.stop
	8.11 Kinect.closeDevice

	 9. Mapping
	 10. Conclusion
	 11. References

