
Sound Matching in SuperCollider

Gerard Roma
School of Computing and Engineering

University of West London
gerard.roma@uwl.ac.uk

ABSTRACT

Sound matching is a classic problem in sound synthesis,
originally proposed for controlling FM synthesis. Given
a target sound, the problem is to find the parameters that
a synthesizer could use to approximate the target. This
paper describes an implementation of sound matching in
SuperCollider, using the Fluid Corpus Manipulation tool-
box. Given a synth definition designed by the user, the sys-
tem trains a model that can approximate existing sounds
by predicting synthesizer parameters. Matching can be
performed for a whole buffer or continuously in real time.
problem.

1. INTRODUCTION

Electronic and digital sound synthesis techniques are of-
ten developed as a dialogue between the aim of imitating
real world sounds and the interest in exploring the possi-
bilities of technology for creating new sounds. A the same
time, the success of different synthesis techniques, such
as subtractive, additive, wavetable or FM synthesis, has
been heavily influenced by the balance between usability
an sonic potential. The difficulty of programming FM syn-
thesis for reproducing natural sounds fostered the emer-
gence of sound matching [1]. This technique originally
intended to automatically find the parameters required for
an FM synthesizer in order to recreate an existing sound,
such as a musical instrument sound. More generally, sound
matching can be described as an interaction paradigm for
automatic programming of a sound synthesizer based on a
target sound. With the popularization of machine learning
techniques for automating different tasks in music technol-
ogy, interest in sound matching techniques has increased.
Several works have continued to focus on the difficulty of
programming FM synthesizers [2, 3, 4].

The SuperCollider (SC) synthesis server and environment
offer a fertile ground for experimentation with synthesizer
sound matching. The combination of a high-level language
and a sound synthesis engine makes it particularly easy to
experiment with different synthesis techniques. SC users
typically create synth definitions that define the signal pro-
cessing graph of a synthesizer. In this context, sound match-
ing can be used to improve different workflows.

From a ‘traditional’ perspective, sound matching can be
helpful to discover configurations and create presets for un-

Copyright: ©2025 Gerard Roma et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

predictable synthesis techniques. In this sense, matching
existing sounds can be useful when developing new syn-
thesizers.

Sound matching can also be useful during sound design
when trying to reproduce specific natural sounds. In this
case, creating a synthesizer version of a sound allows fur-
ther tweaking the synthesizer to create different variations,
or to adapt to specific constraints such as pitch or duration.

Generally, sound matching can be seen as an interaction
paradigm, where a sound is used as an intuitive interface
for a complex system. This is similar to audio query-by-
example (QbE) [5], where sounds similar to a target sound
are retrieved from a database based on acoustic features,
or concatenative synthesis [6], where the target sound is
reconstructed from a database of sound particles. From this
point of view, sound matching can be seen as an automatic
mapping from audio features to to synthesizer parameters.

This paper describes an implementation of sound match-
ing in SuperCollider, using the Fluid Corpus Manipula-
tion toolbox. The next section reviews the implementa-
tions used in recent literature. Section 3 describes the pro-
posed implementation. Section 4 describes some examples
an initial impressions. There are many possibilities for fur-
ther exploration. Section 5 concludes with a brief discus-
sion and ideas for future work.

2. BACKGROUND

Early research on synthesizer sound matching was based
on searching for suitable parameters using genetic algo-
rithms (GA)[1]. Beyond searching for a set of parameters,
GAs approach can also be used for generating synthesizer
patches. For example, a system implemented in Pd was de-
scribed by Macret and Pasquier [7]. However, such search-
based approaches are inherently limited for interactive use,
as each search process may take hours to complete. Most
recent work has used regression models, typically neural
networks, which are trained to predict the parameters of
a synthesizer given the resulting sound. Once trained, the
regression model can be used in a real-time context.

From an implementation perspective, model-based sound
matching requires a sound synthesizer and a machine learn-
ing library. Typically, a software synthesizer is used along
with Python code for the optimization.

Given the original focus on FM synthesis, several works
have continued to explore the use of FM synthesis. A com-
monly used software plugin [2, 8, 9, 4] is dexed 1 , an open
source clone of the Yamaha DX7.

1 https://asb2m10.github.io/dexed/

mailto:gerard.roma@uwl.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://asb2m10.github.io/dexed/

Some studies [3, 4, 10] have focused on subtractive syn-
thesis using Diva 2 , a popular commercial virtual analogue
synthesizer plugin.

Serum 3 is a commercial wavetable synthesizer that has
also been used in some sound matching systems [10, 11].

It is also worth mentioning that a sound matching inter-
face is available for the commercial synthesizer Synplant 4

Popular synthesizers often have a large number of param-
eters, and this complexity supports the use case of sound
matching for facilitating sound design. On the other hand,
the more parameters are used, the harder the regression
problem will be. Thus, in some studies a subset of param-
eters is used, and most works train on databases of existing
presets.

In order to programmatically use the plugins from Python,
some works use Renderman [2] or DawDreamer [12]. How-
ever, as noted by Barkan and Tsiris [13], in addition to
the difficulties of integrating VST plug-ins with Python,
using commercial synthesizers makes it more difficult to
reproduce existing results. In this case, the authors devel-
oped their own synthesizer using JSyn [14]. A similar ex-
ample is the project by Masuda and Saito [15] where the
authors used the Faust language [16]. These projects use
open-ended systems for developing synthesizers, but the
implementation is specific to the presented experiments.
In contrast, this paper proposes a tool for integrating sound
matching into SuperCollider sound design and musicking
workflows. This follows previous work that combined Su-
perCollider with Python [17].

3. SYSTEM

Model-based sound matching is a regression problem where
the model, based on a given synthesizer, learns a mapping
from a target sound to a set of parameters for the synthe-
sizer, which it uses to approximate the target sound. This
can be implemented in SuperCollider using the Fluid Cor-
pus Manipulation Toolbox (FluCoMa)[18]. The toolbox
contains several objects for feature extraction and a multi-
layer-perceptron (MLP) regression object (FluidMLPRe-
gressor). The help file for FluidMLPRegressor already
contains a small example of sound matching. This section
presents a class-based implementation that offers a high-
level interface for both buffer-based and real-time sound
matching. An overview is shown in Figure 1. Since the
FluCoMa toolbox may need to block the server for some
operations, the class uses a private server for feature ex-
traction and training.

3.1 Synth definition

The main user interface element of the system is a synth
definition. Although a synthesis function could also be
used, synth definitions are preferred as a more general rep-
resentation. The user is expected to design or use exist-
ing synth definitions to train a synthesizer programming
model. The provided definition is expected to use the main
output bus as its output, which means that when recording
a dataset, the different sounds generated by randomly sam-
pled parameters can be heard. So far this has proven useful

2 https://u-he.com/products/diva/
3 https://xferrecords.com/products/serum/
4 https://soniccharge.com/synplant

for gauging the possibilities of the input synth definition.
A more specific constraint is that, for the purpose of ran-
dom sampling, all parameters are assumed to range from 0
to 1 so they need to be mapped inside the definition.

3.2 Feature extraction

Different features can be used to parametrize the sound
coming from the synths for use by the regression model.
The options are: raw audio, Mel bands or Mel frequency
cepstral coefficients (MFCC). Raw audio is generally more
expensive but can be feasible for short sounds. By default,
MFCCs are used. Except when using raw audio, the user
may also chose to aggregate features into statistics, which
greatly reduces the amount of information and speed of the
training process. Following existing practice, the default is
to use the whole matrix of MFCCs, as this can potentially
allow better estimation of temporal envelopes.

3.3 Regression

The FluidMLPRegressor object learns a mapping between
the input features and the synthesizer parameters. By de-
fault, two hidden layers are used The hidden layer sizes are
derived from the number of output parameters. The output
layer activation is set to be a sigmoid, which works well
for the parameters generated in the [0, 1] range. The Flu-
idMLPRegressor implementation uses a mean-square error
(MSE) loss function, which is used for the target parame-
ters. For the hidden layers, sigmoid functions are used as
well, unless raw audio is used as a feature, in which case
tanh activations are used.

After dataset creation and training, the system can be
used for matching arbitrary sounds. This can be done at
once for an audio buffer or in a continuous fashion.

3.4 Buffer-based matching

In buffer-based matching, the user provides a buffer, which
may come from an audio file or recording. The buffer
must be allocated in the private server, an have the same
duration as the sounds used for training. The system pre-
dicts the synthesizer parameters to approximate the whole
sound. This can be useful for mass-production of synthdefs
with envelopes generators or other temporal processes con-
trolled by few parameters.

3.5 Real-time matching

Another option is matching in real time. For this case,
features are averaged both for training and prediction, so
each training example is represented as a single spectral
frame. The parameters of the synthesizer are thus assumed
to continuously control the spectrum. For inference, in this
case the system creates an analysis and prediction synth
which continuously listens to a user-specified bus. This
synth wraps the function in the synth definition provided
for training so that it can be controlled with the predicted
parameters.

https://u-he.com/products/diva/
https://xferrecords.com/products/serum/
https://soniccharge.com/synplant

SynthDef

Random
Parameters

Features

MLPRegressor

Random
Parameters

Random
Parameters

Random
Parameters

Synth
Synth

Synth
Synth

Features
Features

Features

Training

SynthDef

Random
Parameters

Features

MLPRegressor

Random
Parameters

Random
Parameters

Random
Parameters

Synth
Synth

Synth
Synth

Features
Features

Features

Training

Audio

Features MLPRegressor Parameters

SynthDef

Synth

Inference

Figure 1. System diagram.

4. INITIAL IMPRESSIONS

The proposed system is implemented in a SuperColier class,
SynthSoundMatch 5 , which requires the FluCoMa library.
The code is still in early development stages, but can be
used as a simple interface to experiment with sound match-
ing in SuperCollider. Initial experiences have shown that,
while it is still challenging to train models with complex
synth definitions or produce realistic approximations of nat-
ural sounds, training models with very simple synth defini-
tions is promising. While recent research in sound match-
ing often employs GPU-based training of relatively heavy
architectures, working within an open ended interactive
creative coding environment benefits from a focus on syn-
thesizers with very low numbers of parameters, which are
easy to train.

Figure 2 shows an example of a simple synth definition
that produces percussive sounds by filtering noise. A model
was trained with 14400 half second random examples and
then used to match a collection of recorded percussion sounds
obtained from the Freesound database 6 . An example is
shown in Figure 3. While the synth definition is not able
to model specific partials, it can be seen that the model ap-
proximates the frequency distribution and decay time.

Figure 4 shows another synth definition using two for-
mant oscillators. In this case, the model was trained with
3600 half a second examples which where averaged and
used for real-time matching with a speech recording, also
from Freesound 7 (Figure 5). The model tracks the pitch
and amplitude, and some of the timbre of the original can
be heard in the resulting sound.

It can be seen that the code maps the parameters from the
[0, 1] range internally. In general, linear mapping resulted
in better performance when training the regression model,
despite that some parameters would be easier to control
manually with an exponential mapping.

5 https://github.com/g-roma/SynthSoundMatch
6 The sample pack was uploaded by user soneproject: https://

freesound.org/people/soneproject/packs/23903/
7 The sample uploaded by user alphahog: https://freesound.

org/people/alphahog/sounds/46366/

1
2 (
3 var def = SynthDef(\perc,
4 {|freq1, freq2, rq1, rq2, balance, decay|
5 var noise = PinkNoise.ar(0.05);
6 var ring1 = Ringz.ar(noise, freq1.linlin(0,

1, 50, 2000), rq1.linlin(0,1,0.001, 0.01));
7 var ring2 = Ringz.ar(noise, freq2.linlin(0,

1, 50, 2000), rq2.linlin(0,1,0.01, 0.1));
8 var mix = (balance * ring1) + ((1-balance) *

 ring2);
9 var env = Decay.ar(Impulse.ar(0), decay.

linlin(0, 1, 0.01, 0.7),);
10 Out.ar(0, mix * env);
11 }
12);

Figure 2. Synth definition for buffer-based matching

Figure 3. Percussive sounds matched from buffer

5. CONCLUSIONS

This paper has described the early stages of an implemen-
tation of synthesizer sound matching in the SuperCollider
environment. Adopting this methodology in an open-ended
synthesis can be puzzling as, if the goal is to approximate
a given target sound, there endless possibilities for obtain-
ing interesting results through manual sound design. When
training sound matching models via random sampling of
parameters and CPU-based training, designing synth defi-
nitions for matching requires thinking about the target sounds
while at the same time keeping the number of parame-
ters low. In this context, a promising application of sound
matching the automation of nonlinear mappings from acous-
tic features to synthesizer parameters, which can be used to
create hybrid sounds.

Future work will explore different synthesis techniques
and investigate different approaches for sampling the pa-
rameters, as well as add more options for acoustic features.

6. REFERENCES

[1] A. Horner, J. Beauchamp, and L. Haken, “Machine
tongues XVI: Genetic algorithms and their application
to FM matching synthesis,” Computer Music Journal,
vol. 17, no. 4, pp. 17–29, 1993.

https://github.com/g-roma/SynthSoundMatch
https://freesound.org/people/soneproject/packs/23903/
https://freesound.org/people/soneproject/packs/23903/
https://freesound.org/people/alphahog/sounds/46366/
https://freesound.org/people/alphahog/sounds/46366/

1
2 var def = SynthDef(\formants,
3 {|freq, ffreq1, ffreq2, amp|
4 Out.ar(0, amp * Mix.new(
5 Formant.ar(
6 freq.linlin(0,1, 60, 200),
7 [ffreq1.linlin(0, 1, 200, 900),
8 ffreq2.linlin(0,1, 600, 2500)])
9));

10 });

Figure 4. Synth definition for real-time matching

Figure 5. Sound matched in real time

[2] M. J. Yee-King, L. Fedden, and M. d’Inverno, “Au-
tomatic programming of VST sound synthesizers us-
ing deep networks and other techniques,” IEEE Trans-
actions on Emerging Topics in Computational Intelli-
gence, vol. 2, no. 2, pp. 150–159, 2018.

[3] P. Esling, N. Masuda, A. Bardet, R. Despres,
A. Chemla et al., “Universal audio synthesizer control
with normalizing flows,” in International Conference
on Digital Audio Effects (DAFx 2019), 2019.

[4] N. Masuda and D. Saito, “Quality Diversity for Syn-
thesizer Sound Matching,” in 2021 24th International
Conference on Digital Audio Effects (DAFx). IEEE,
2021, pp. 300–307.

[5] M. Helén and T. Virtanen, “Audio query by example
using similarity measures between probability density
functions of features,” EURASIP Journal on Audio,
Speech, and Music Processing, vol. 2010, pp. 1–12,
2009.

[6] A. J. Hunt and A. W. Black, “Unit selection in a con-
catenative speech synthesis system using a large speech
database,” in 1996 IEEE international conference on
acoustics, speech, and signal processing conference
proceedings, vol. 1. IEEE, 1996, pp. 373–376.

[7] M. Macret and P. Pasquier, “Automatic design of sound
synthesizers as pure data patches using coevolutionary
mixed-typed cartesian genetic programming,” in Pro-
ceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, 2014, pp. 309–316.

[8] Z. Chen, Y. Jing, S. Yuan, Y. Xu, J. Wu, and
H. Zhao, “Sound2synth: Interpreting sound via fm
synthesizer parameters estimation,” arXiv preprint
arXiv:2205.03043, 2022.

[9] G. Le Vaillant, T. Dutoit, and S. Dekeyser, “Improv-
ing synthesizer programming from variational autoen-
coders latent space,” in 2021 24th International Con-
ference on Digital Audio Effects (DAFx), 2021, pp.
276–283.

[10] D. Faronbi, I. Roman, and J. P. Bello, “Exploring
Approaches to Multi-Task Automatic Synthesizer Pro-
gramming,” in ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2023, pp. 1–5.

[11] C. Mitcheltree and H. Koike, “SerumRNN: Step by
step audio VST effect programming,” in International
Conference on Computational Intelligence in Music,
Sound, Art and Design (Part of EvoStar). Springer,
2021, pp. 218–234.

[12] D. Braun, “DawDreamer: bridging the gap between
digital audio workstations and Python interfaces,”
arXiv preprint arXiv:2111.09931, 2021.

[13] O. Barkan and D. Tsiris, “Deep synthesizer parameter
estimation,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2019, pp. 3887–3891.

[14] P. Burk, “JSyn - A Real-time Synthesis API for Java,”
in Proceedings of the 1998 International Computer
Music Conference, ICMC 1998, Ann Arbor, Michigan,
USA, October 1-6, 1998. Michigan Publishing, 1998.

[15] N. Masuda and D. Saito, “Quality-diversity for syn-
thesizer sound matching,” Journal of Information Pro-
cessing, vol. 31, pp. 220–228, 2023.

[16] Y. Orlarey, D. Fober, and S. Letz, “Faust: an efficient
functional approach to dsp programming,” New com-
putational paradigms for computer music, pp. 65–96,
2009.

[17] G. Roma, “Sound matching using synthesizer ensem-
bles,” in 27th International Conference on Digital Au-
dio Effects (DAFx), 2024.

[18] P. A. Tremblay, G. Roma, and O. Green, “Enabling
programmatic data mining as musicking: the fluid cor-
pus manipulation toolkit,” Computer Music Journal,
vol. 45, no. 2, pp. 9–23, 2021.

	 1. Introduction
	 2. Background
	 3. System
	3.1 Synth definition
	3.2 Feature extraction
	3.3 Regression
	3.4 Buffer-based matching
	3.5 Real-time matching

	 4. Initial impressions
	 5. Conclusions
	 6. References

