

Fork: Live-Composing a Soundtrack for Chess

Victor Zheng
North Central College

vzheng2696@noctrl.edu

ABSTRACT
Fork is a music composition algorithm that composes a
soundtrack using data derived from chess games. Unlike
traditional sonification, Fork devises a musical grammar
that combines modal and tonal elements into a flexibly
functional preparation and resolution system, ensuring a
sense of musical progression that mirrors the natural pro-
gression of a chess game. It uses SuperCollider to effi-
ciently control random parameters that control note out-
put as well as sonic parameters in synthesis, applying both
to produce musical development.

1. DATA INTERPRETATION
Fork depends primarily on tracking the threats and cap-
tures initiated between pieces. Threats are represented by
the variables wAtk and bAtk for threats initiated by White
and Black respectively. At each move, the total between
wAtk and bAtk is compared with the total value from the
previous move, represented by the variable atkDel.

The stability parameter reflects the dynamic state of the
game, derived from the presence of captures or checks.
The presence of either will set stability (stab) at 0. Any
moves that do not cause either will increase stab by 1.
stab is initialized at 3 at the beginning of a game.

Below is the opening of a game illustrating the behavior
of the various parameters at each move.

Figure 1. Starting position.
wAtk = 0;
bAtk = 0;
atkDel = 0;
stab = 3;

Figure 2. 1. e4
wAtk = 0;
bAtk = 0;
atkDel = 0;
stab = 4;

Figure 3. 1...d5
wAtk = 1; //d5
bAtk = 1; //e4
atkDel = 2;
stab = 5;

Figure 4. 2. exd5
wAtk = 0;

bAtk = 1; //d5
atkDel = 1;
stab = 0;

2. MELODIC COMPONENTS
Fork translates the aforementioned parameters into music
through several musical components, structured around a
Dorian scale.

Copyright: © 2025 Victor Zheng. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original author and
source are credited.

mailto:author2@smcnetwork.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

The primary musical component is the direct tone, a tone

which plays at the moment of every move. Each direct tone
is derived from a note randomly chosen using primarily the
atkDel variable:

• When atkDel is equal to 0, the possible tones
comprise the i triad to represent the original tonic.
In C Dorian, this translates to the notes C, E♭, and
G, each with an equal chance of being selected.
Musically, this portrays a stable state as the start-
ing tonic.

• When atkDel is equal to 1, the possible tones are
the first two notes of the ii triad, corresponding to
D and F in C Dorian. This produces an unstable
musical state, where the draw is to return to tonic.

• Finally, when atkDel is 2 or higher, or when a
capture or check is taking place, the possible tones
correspond to the VII triad, or B♭, D, and F in C
Dorian. The introduction of these notes also pro-
duces an unstable musical state, but with a draw to
establish a new stability away from the original
tonic.

The use of the Dorian scale avoids the leading tone to the
tonic and exploits the half step leading from D up to E♭ as
well as from A♭ down to G, allowing for more flexible
possibilities in resolution through these auxiliary tendency
tones while sacrificing tendency towards C, with the ra-
tionale that its preponderance from stable direct tones will
lend it enough tonic weight on its own.

Each direct tone is fed into a list, bgNotes. bgNotes
provides the source notes that comprise the background
melody. The notes play intermittently at first, and then co-
alesce into a continuous pattern of 16th and 8th notes after
the 6th move is played. This staggering of entries of differ-
ent musical entities serves as a way to control musical pro-
gression that reflects the game state.

The background melody plays randomly generated notes
taken from bgNotes. Repetition is allowed in bgNotes;
long stretches of atkDel equal to 0 will therefore steer the
melody towards a C minor sonority as C, E♭, and G prop-
agate through the list, while more consistently higher at-
kDel values will pull the melody towards a B♭ major so-
nority. bgNotes has a maximum size of 10; any further
additions after it attains size 10 will eliminate the oldest
value of the list, thereby representing only the previous 10
moves.

Concurrently, the high melody begins playing after the
first capture is made. Unlike the background melody,
which starts after a set number of moves, the high melody
can begin earlier or later depending on how conservatively
the game is played, allowing for some variance in musical
progression. The high melody also uses the notes from
bgNotes; rather than using a random distribution for the
notes, the high melody reproduces bgNotes in exact or-
der, with each note having a chance to be raised one or two
octaves. The high melody uses a similar weighted random
distribution for rhythm, using the same random weights as
the background melody, but slowly and with long pauses
rather than playing continuously.

3. HARMONIC COMPONENTS
In harmonic support are four main components, a bassline,
a chord, a bass rhythm, and a high percussion. The bass
line is a single tone that plays continuously throughout the
game. It begins on scale degree 1, C in C Dorian. The
chord is formed by up to 16 continuous tones randomly
distributed across different octaves of the triad formed
from the bass line. The 16 tones are initialized as silent,
with one being activated with every two captures. The ef-
fect is subtle at first, but as the game progresses with
mounting captures, the bassline and chord will become
more and more prominent, producing a large-scale devel-
opmental trajectory that manifests over the entire game.

The bassline and chord shift simultaneously with the di-
rect tone when a capture or check is initiated, resetting
stab to 0 and producing a harmonic shift. This represents
a progression, where harmony moves in a way that departs
stability. Each chord has a number of possibilities for un-
stable movement, represented in Figure 5 below:

Figure 5. Progression map. All chords have one or more
choices in progressing. Progression paths are reminiscent of
tonic to predominant motion in common practice harmony, pri-
marily avoiding leading tone dominant-tonic motion except
when reaching B♭, which are treated by the direct tone and mel-
ody as inherently unstable.

When stab exceeds 3, thus returning the game to a sta-
ble state, the chord will resolve, following its own set of
possibilities, represented in Figure 6.

C

D E♭

F

G A

B♭

Figure 6. Resolution map. Far fewer choices are available with
resolution than with progression, using the C, E♭, G, and B♭
chords as possible destinations. Leading tone dominant-tonic
motion is more emphasized in cases of B♭ and E♭, but the inclu-
sion of more indirect resolution paths such as C to E♭ and back
maintains a balance between the four possible resolution end-
points.

The bass rhythm begins playing after the first capture,
when the game settles into its first stable state after open-
ing exchanges. The bass rhythm takes the existing note be-
ing played in the bass line and arpeggiates notes in random
order from the triad forming from the bass note in accord-
ance with the scale, thus producing a broken chord to ac-
company the continuous bass and chord tones. The rhythm
is a steady 16th note pattern with an accent every four
notes, thus producing a beat every quarter note. The bass
rhythm begins panning back and forth in a similar manner
to the background melody and the high melody after the
first resolution.

The high percussion begins playing intermittently after
the first resolution. Similarly to the high melody and back-
ground melody, its specific entry condition contributes to
the forward progression of the music and its entry depends
on the nature of play. The high percussion component
comprises the bass note and a third up, both elevated by
two octaves. The high percussion pattern involves repeat-
ing the two notes in a random rhythmic pattern comprising
80% sixteenth notes and 20% eighth notes, producing a
rapid pattern that falls in time with the background melody
and bass rhythm.

4. HIERARCHY OF CONTROL
The hierarchy of note generation is therefore an integral
aspect of Fork’s musical generation and output. The direct
tone is the main immediate output to each move and the
only element directly beholden to the players’ input. Other
effects down the hierarchy present as more indirect effects,
manifesting asynchronously to the direct input. Changes to
the music thus propagate through the hierarchy to produce
a range from immediate to more gradual change across the
trajectory of the entire game, applying a level of independ-
ence to the musical development rather than being fully

beholden to the players’ playing rhythm. This propagation
is presented below in Figure 7.

Figure 7: Hierarchy of control. A player does not need to alter
any aspect of their chess-playing technique to control the sound-
track compellingly. Their move is their only control vector on
the soundtrack, but its effect on the music is propagated through
a hierarchy to control an ultimately deep, diverse range of musi-
cal parameters.

Figure 8 shows in score form a sample realization of the
notes that might result from the opening shown above. For
demonstration purposes, the bass rhythm is shown as play-
ing continuously throughout and the high percussion,
background melody, and high melody are shown as real-
ized at the end of White’s 5th turn, all disregarding the
usual conditions for them to begin playing.

Figure 8: Sample realization.

5. SYNTHESIS
Three main SynthDefs produce the sounds that comprise
the total output.

C

D E♭

F

G A

B♭

(
 SynthDef(\bass, {
 arg freq, pan = 0, noise = 0.01, amp
= 0.2, ampLag = 2, sus, out = 0;
 var sig;
 sig = 15.collect({
 LFSaw.ar(freq*rrand(1 - noise, 1 +
noise), mul:0.05);
 });
 amp = amp.lag(ampLag);
 sig = Splay.ar(sig,
LFNoise1.ar(1).range(0.5, 0.9));
 sig = MoogFF.ar(sig,
LFNoise1.ar(0.2).range(550, 1000));
 sig = sig.scramble;
 sig = sig*amp;
 Out.ar(out, sig);
}).add;
);

(
 SynthDef(\rhythmicBass, {
 arg freq, pan = 0, noise = 0.01, amp
= 0.2, out = 0;
 var sig, env;
 env = EnvGen.ar(Env.perc(), doneAc-
tion:2);
 sig = 15.collect({
 LFSaw.ar(freq*rrand(1 - noise, 1 +
noise), mul:0.05);
 });
 sig = Splay.ar(sig, center:pan);
 sig = MoogFF.ar(sig,
LFNoise1.ar(0.2).range(550, 1000));
 sig = sig.scramble;
 sig = sig*env;
 sig = sig*amp;
 Out.ar(out, sig);
 }).add;
);

(
 SynthDef(\moveTone, {
 arg freq, pan = 0, noise = 0.1, amp =
0.2, atkTime = 0.01, susTime = 0, relTime
= 1, out = 0;
 var sig0, sig1, sig, env;
 env = EnvGen.ar(Env.new([0, 1, 1, 0],
[atkTime, susTime, relTime], \sqr), done-
Action:2);
 sig0 = 5.collect({
 SinOsc.ar(freq*rrand(1-noise,
1+noise), mul:0.01);
 });
 sig0 = Mix.ar(sig0);
 sig1 = 5.collect({
 LFSaw.ar(freq*rrand(1-noise,
1+noise), mul:0.01);
 });
 sig1 = Mix.ar(sig1);

 sig = Mix.ar([sig0, sig1]);
 sig = sig * env;
 sig = Pan2.ar(sig, pan);
 sig = sig*amp;
 Out.ar(out, sig);
 }).add;
);

All tones that produce the bassline and the chord compo-
nents are generated by the \bass SynthDef. The \rhyth-
micBass SynthDef is identical in synthesis to \bass, only
with an integrated envelope that allows it to perform the
bass rhythm musical component instead of the continuous
tones found in the bassline and chord. Finally, the \mov-
eTone is responsible for producing the direct tones, back-
ground melody, high melody, and high percussion compo-
nents. Apart from the continuous bass and chord tones,
which are simply continuously running Synths, all patterns
are rendered using Pbindefs which run continuously, hav-
ing their arguments adjusted with each move.

Most musically significant is the noise argument, present
in all three SynthDefs. As each SynthDef employs .col-
lect to stack a number of waveforms with the same base
frequency, noise introduces a random amount of detune to
each one, resulting in a choral effect at low values and
noise effect at high values. In the short term, this timbral
variance maintains a level of dynamicism with each note
through the subtle choral, beating timbre. Noise becomes
programmatically significant as the cumulative noise from
the stacked tones in the chord component gradually trans-
forms the clear sonority into a less resonant, fuzzy effect
as chord tones enter.

6. CONCLUSIONS
The translation of human input, i.e. the chess game, into
musical structures, can inform an unprecedented degree of
interactivity in video game music composition. Fork ex-
plores the ways in which both the input and output of such
information exchange can be quantized, and in the case of
the musical output, dives into parameters beyond that of
traditional note-based music theory that allow quantization
of sonic parameters beyond the constraints of any musical
system.

Fork employs controlled randomness to ensure that each
rendering, even of the same exact game, produces a unique
musical result. This uniqueness is crucial to the artistic vi-
sion of the project, to avoid any possibility of a 1:1 con-
version between a game and a specific output.

The subtle yet continuous movement in specific sonic
parameters controlling spatialization and timbral control
set Fork apart from traditional MIDI note generation. By
controlling the synthesized sound directly, it transcends
the boundaries of traditional note composition and ex-
pands the possibilities of algorithmic control beyond that
of traditional music theory.

